Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 176
1.
Biology (Basel) ; 13(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38666843

Formoterol, a ß2-adrenergic receptor (ß2AR) agonist, shows promise in various diseases, but its effectiveness in Parkinson's disease (PD) is debated, with unclear regulation of mitochondrial homeostasis. This study employed a cell model featuring mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) variants associated with familial parkinsonism, demonstrating mitochondrial dysfunction and dynamic imbalance, exploring the therapeutic effects and underlying mechanisms of formoterol. Results revealed that 24-h formoterol treatment enhanced cell proliferation, viability, and neuroprotection against oxidative stress. Mitochondrial function, encompassing DNA copy number, repatriation, and complex III-linked respiration, was comprehensively restored, along with the dynamic rebalance of fusion/fission events. Formoterol reduced extensive hypertubulation, in contrast to mitophagy, by significantly upregulating protein Drp-1, in contrast to fusion protein Mfn2, mitophagy-related protein Parkin. The upstream mechanism involved the restoration of ERK signaling and the inhibition of Akt overactivity, contingent on the activation of ß2-adrenergic receptors. Formoterol additionally aided in segregating healthy mitochondria for distribution and transport, therefore normalizing mitochondrial arrangement in mutant cells. This study provides preliminary evidence that formoterol offers neuroprotection, acting as a mitochondrial dynamic balance regulator, making it a promising therapeutic candidate for PD.

2.
Article En | MEDLINE | ID: mdl-38650104

OBJECTIVE: IRF2BPL mutation has been associated with a rare neurodevelopmental disorder with abnormal movements, including dystonia. However, the role of IRF2BPL in dystonia remains elusive. We aimed to investigate IRF2BPL mutations in a Taiwanese dystonia cohort. METHODS: A total of 300 unrelated patients with molecularly unassigned isolated (n = 256) or combined dystonia (n = 44) were enrolled between January 2015 and July 2023. The IRF2BPL variants were analyzed based on whole exome sequencing. The in silico prediction of the identified potential pathogenic variant was performed to predict its pathogenicity. We also compared the clinical and genetic features to previous literature reports. RESULTS: We identified one adolescent patient carrying a de novo heterozygous pathogenic variant of IRF2BPL, c.379C>T (p.Gln127Ter), who presented with generalized dystonia, developmental regression, and epilepsy (0.33% of our dystonia cohort). This variant resides within the polyglutamine (poly Q) domain before the first PEST sequence block of the IRF2BPL protein, remarkably truncating the protein structure. Combined with other patients with IRF2BPL mutations in the literature (n = 60), patients with variants in the poly Q domain have a higher rate of nonsense mutations (p < 0.001) and epilepsy (p = 0.008) than patients with variants in other domains. Furthermore, as our index patient, carriers with substitutions before the first PEST sequence block have significantly older age of onset (p < 0.01) and higher non-epilepsy symptoms, including generalized dystonia (p = 0.003), and ataxia (p = 0.003). INTERPRETATION: IRF2BPL mutation is a rare cause of dystonia in our population. Mutations in different domains of IRF2BPL exhibit different phenotypes.

3.
Mov Disord ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38576081

Basic Science is crucial for the advancement of clinical care for Movement Disorders. Here, we provide brief updates on how basic science is important for understanding disease mechanisms, disease prevention, disease diagnosis, development of novel therapies and to establish the basis for personalized medicine. We conclude the viewpoint by a call to action to further improve interactions between clinician and basic scientists. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Stem Cell Res ; 76: 103379, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458030

Leigh syndrome is a rare autosomal recessive disorder showcasing a diverse range of neurological symptoms. Classical Leigh syndrome is associated with mitochondrial complex I deficiency, primarily resulting from biallelic mutations in the NDUFAF5 gene, encoding the NADH:ubiquinone oxidoreductase complex assembly factor 5. Using the Sendai virus delivery system, we generated an induced pluripotent stem cell line from peripheral blood mononuclear cells of a 47-years-old female patient who carried a homozygous NDUFAF5 c.836 T > G (p.Met279Arg) mutation. This cellular model serves as a tool for investigating the underlying pathogenic mechanisms and for the development of potential treatments for Leigh syndrome.


Induced Pluripotent Stem Cells , Leigh Disease , Mitochondrial Diseases , Humans , Female , Middle Aged , Leigh Disease/genetics , Mutation, Missense , Induced Pluripotent Stem Cells/pathology , Leukocytes, Mononuclear/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mutation , Methyltransferases/genetics , Mitochondrial Proteins/genetics
5.
Comput Methods Programs Biomed ; 244: 107991, 2024 Feb.
Article En | MEDLINE | ID: mdl-38185040

BACKGROUND AND OBJECTIVE: Current methods for imaging reconstruction from high-ratio expansion microscopy (ExM) data are limited by anisotropic optical resolution and the requirement for extensive manual annotation, creating a significant bottleneck in the analysis of complex neuronal structures. METHODS: We devised an innovative approach called the IsoGAN model, which utilizes a contrastive unsupervised generative adversarial network to sidestep these constraints. This model leverages multi-scale and isotropic neuron/protein/blood vessel morphology data to generate high-fidelity 3D representations of these structures, eliminating the need for rigorous manual annotation and supervision. The IsoGAN model introduces simplified structures with idealized morphologies as shape priors to ensure high consistency in the generated neuronal profiles across all points in space and scalability for arbitrarily large volumes. RESULTS: The efficacy of the IsoGAN model in accurately reconstructing complex neuronal structures was quantitatively assessed by examining the consistency between the axial and lateral views and identifying a reduction in erroneous imaging artifacts. The IsoGAN model accurately reconstructed complex neuronal structures, as evidenced by the consistency between the axial and lateral views and a reduction in erroneous imaging artifacts, and can be further applied to various biological samples. CONCLUSION: With its ability to generate detailed 3D neurons/proteins/blood vessel structures using significantly fewer axial view images, IsoGAN can streamline the process of imaging reconstruction while maintaining the necessary detail, offering a transformative solution to the existing limitations in high-throughput morphology analysis across different structures.


Microscopy , Neurons , Anisotropy , Image Processing, Computer-Assisted
6.
NPJ Parkinsons Dis ; 9(1): 163, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38092812

Retinal thickness is related to Parkinson's disease (PD), but its association with the severity of PD is still unclear. We conducted a Mendelian randomized (MR) study to explore the association between retinal thickness and PD. For the two-sample MR analysis, the summary statistics obtained from genome-wide association studies on the thickness of Retinal nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) were employed as exposure, while the summary statistics associated with PD were used as the outcome. The primary approach utilized was inverse variance weighted. To correct for multiple testing, the false discovery rate (FDR) was employed. For sensitivity analysis, an array of robust MR methods was utilized. We found genetically predicted significant association between reduced RNFL thickness and a reduced risk of constipation in PD (odds ratio [OR] = 0.854, 95% confidence interval [CI] (0.782, 0.933), P < 0.001, FDR-corrected P = 0.018). Genetically predicted reduced RNFL thickness was associated with a reduced Unified Parkinson's Disease Rating Scale total score (ß = -0.042, 95% CI (-0.079, 0.005), P = 0.025), and reduced GCIPL thickness was associated with a lower risk of constipation (OR = 0.901, 95% CI (0.821, 0.988), P = 0.027) but a higher risk of depression (OR = 1.103, 95% CI (1.016, 1.198), P = 0.020), insomnia (OR = 1.090, 95% CI (1.013, 1.172), P = 0.021), and rapid eye movement sleep behaviour disorder (RBD) (OR = 1.198, 95% CI (1.061, 1.352), P = 0.003). In conclusion, we identify an association between retinal thickness and non-motor symptoms (constipation, depression, insomnia and RBD) in PD, highlighting the potential of retinal thickness as a biomarker for PD nonmotor symptoms.

7.
NPJ Parkinsons Dis ; 9(1): 165, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38097625

Gut microbial proteolytic metabolism has been reportedly altered in Parkinson's disease (PD). However, the circulating aromatic amino acids (AAA) described in PD are inconsistent. Here we aimed to investigate plasma AAA profiles in a large cohort of PD patients, and examine their correlations with clinical severity and gut microbiota changes. We enrolled 500 participants including 250 PD patients and 250 neurologically normal controls. Plasma metabolites were measured using liquid chromatography mass spectrometry. Faecal samples were newly collected from 154 PD patients for microbiota shotgun metagenomic sequencing combined with data derived from 96 PD patients reported before. Data were collected regarding diet, medications, and motor and non-motor symptoms of PD. Compared to controls, PD patients had higher plasma AAA levels, including phenylacetylglutamine (PAGln), p-cresol sulfate (Pcs), p-cresol glucuronide (Pcg), and indoxyl sulfate (IS). Multivariable linear regression analyses, with adjustment for age, sex, and medications, revealed that the plasma levels of PAGln (coefficient 4.49, 95% CI 0.40-8.58, P = 0.032) and Pcg (coefficient 1.79, 95% CI 0.07-3.52, P = 0.042) positively correlated with motor symptom severity but not cognitive function. After correcting for abovementioned potential confounders, these AAA metabolites were also associated with the occurrence of constipation in PD patients (all P < 0.05). Furthermore, plasma levels of AAA metabolites were correlated with the abundance of specific gut microbiota species, including Bacteroides sp. CF01-10NS, Bacteroides vulgatus, and Clostridium sp. AF50-3. In conclusion, elevated plasma AAA metabolite levels correlated with disease characteristics in PD, suggesting that upregulated proteolytic metabolism may contribute to the pathophysiology of PD.

8.
BMC Biol ; 21(1): 293, 2023 12 18.
Article En | MEDLINE | ID: mdl-38110916

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder with clinical presentations of progressive cognitive and memory deterioration. The pathologic hallmarks of AD include tau neurofibrillary tangles and amyloid plaque depositions in the hippocampus and associated neocortex. The neuronal aggregated tau observed in AD cells suggests that the protein folding problem is a major cause of AD. J-domain-containing proteins (JDPs) are the largest family of cochaperones, which play a vital role in specifying and directing HSP70 chaperone functions. JDPs bind substrates and deliver them to HSP70. The association of JDP and HSP70 opens the substrate-binding domain of HSP70 to help the loading of the clients. However, in the initial HSP70 cycle, which JDP delivers tau to the HSP70 system in neuronal cells remains unclear. RESULTS: We screened the requirement of a diverse panel of JDPs for preventing tau aggregation in the human neuroblastoma cell line SH-SY5Y by a filter retardation method. Interestingly, knockdown of DNAJB6, one of the JDPs, displayed tau aggregation and overexpression of DNAJB6b, one of the isoforms generated from the DNAJB6 gene by alternative splicing, reduced tau aggregation. Further, the tau bimolecular fluorescence complementation assay confirmed the DNAJB6b-dependent tau clearance. The co-immunoprecipitation and the proximity ligation assay demonstrated the protein-protein interaction between tau and the chaperone-cochaperone complex. The J-domain of DNAJB6b was critical for preventing tau aggregation. Moreover, reduced DNAJB6 expression and increased tau aggregation were detected in an age-dependent manner in immunohistochemical analysis of the hippocampus tissues of a mouse model of tau pathology. CONCLUSIONS: In summary, downregulation of DNAJB6b increases the insoluble form of tau, while overexpression of DNAJB6b reduces tau aggregation. Moreover, DNAJB6b associates with tau. Therefore, this study reveals that DNAJB6b is a direct sensor for its client tau in the HSP70 folding system in neuronal cells, thus helping to prevent AD.


Alzheimer Disease , HSP40 Heat-Shock Proteins , Molecular Chaperones , Nerve Tissue Proteins , Neuroblastoma , Animals , Humans , Mice , Alternative Splicing , Alzheimer Disease/genetics , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Nerve Tissue Proteins/genetics , Protein Folding , Protein Isoforms/genetics , Protein Isoforms/metabolism
9.
Mov Disord ; 38(12): 2217-2229, 2023 Dec.
Article En | MEDLINE | ID: mdl-37752895

BACKGROUND: Rare mutations in NADH:ubiquinone oxidoreductase complex assembly factor 5 (NDUFAF5) are linked to Leigh syndrome. OBJECTIVE: We aimed to describe clinical characteristics and functional findings in a patient cohort with NDUFAF5 mutations. METHODS: Patients with biallelic NDUFAF5 mutations were recruited from multi-centers in Taiwan. Clinical, laboratory, radiological, and follow-up features were recorded and mitochondrial assays were performed in patients' skin fibroblasts. RESULTS: Nine patients from seven unrelated pedigrees were enrolled, eight homozygous for c.836 T > G (p.Met279Arg) in NDUFAF5 and one compound heterozygous for p.Met279Arg. Onset age had a bimodal distribution. The early-onset group (age <3 years) presented with psychomotor delay, seizure, respiratory failure, and hyponatremia. The late-onset group (age ≥5 years) presented with normal development, but slowly progressive dystonia. Combing 25 previously described patients, the p.Met279Arg variant was exclusively identified in Chinese ancestry. Compared with other groups, patients with late-onset homozygous p.Met279Arg were older at onset (P = 0.008), had less developmental delay (P = 0.01), less hyponatremia (P = 0.01), and better prognosis with preserved ambulatory function into early adulthood (P = 0.01). Bilateral basal ganglia necrosis was a common radiological feature, but brainstem and spinal cord involvement was more common with early-onset patients (P = 0.02). A modifier gene analysis showed higher concomitant mutation burden in early-versus late-onset p.Met279Arg homozygous cases (P = 0.04), consistent with more impaired mitochondrial function in fibroblasts from an early-onset case than a late-onset patient. CONCLUSIONS: The p.Met279Arg variant is a common mutation in our population with phenotypic heterogeneity and divergent prognosis based on age at onset. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Dystonic Disorders , Hyponatremia , Leigh Disease , Movement Disorders , Child, Preschool , Humans , Dystonic Disorders/complications , Hyponatremia/complications , Leigh Disease/genetics , Leigh Disease/complications , Methyltransferases/genetics , Mitochondrial Proteins/genetics , Movement Disorders/complications , Mutation/genetics , Child , Young Adult
10.
Nat Commun ; 14(1): 5183, 2023 08 25.
Article En | MEDLINE | ID: mdl-37626063

CRISPR-Cas9 genome editing has promising therapeutic potential for genetic diseases and cancers, but safety could be a concern. Here we use whole genomic analysis by 10x linked-read sequencing and optical genome mapping to interrogate the genome integrity after editing and in comparison to four parental cell lines. In addition to the previously reported large structural variants at on-target sites, we identify heretofore unexpected large chromosomal deletions (91.2 and 136 Kb) at atypical non-homologous off-target sites without sequence similarity to the sgRNA in two edited lines. The observed large structural variants induced by CRISPR-Cas9 editing in dividing cells may result in pathogenic consequences and thus limit the usefulness of the CRISPR-Cas9 editing system for disease modeling and gene therapy. In this work, our whole genomic analysis may provide a valuable strategy to ensure genome integrity after genomic editing to minimize the risk of unintended effects in research and clinical applications.


CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Genomics , Cell Line
11.
Eur J Neurol ; 30(10): 3098-3104, 2023 10.
Article En | MEDLINE | ID: mdl-37422850

BACKGROUND AND PURPOSE: Dystonia is a heterogeneous movement disorder, and it remains unclear whether neurodegeneration is involved. Neurofilament light chain (NfL) is a biosignature of neurodegeneration. We aimed to investigate whether plasma NfL levels were elevated and associated with disease severity in patients with dystonia. METHOD: We enrolled 231 unrelated dystonia patients (isolated dystonia n = 203; combined dystonia n = 28) and 54 healthy controls from movement disorder clinics. Clinical severity was evaluated using the Fahn Marsden Dystonia Rating Scale, the Unified Dystonia Rating Scale, and the Global Dystonia Rating Scale. Blood NfL levels were measured by single-molecule array. RESULTS: Plasma NfL levels were significantly higher in those with generalized dystonia compared to those with focal dystonia (20.1 ± 8.8 vs. 11.7 ± 7.2 pg/mL; p = 0.01) or controls (p < 0.01), while the level was comparable between the focal dystonia group and controls (p = 0.08). Furthermore, the dystonia combined with parkinsonism group had higher NfL levels than the isolated dystonia group (17.4 ± 6.2 vs. 13.5 ± 7.5 pg/mL; p = 0.04). Notably, whole-exome sequencing was performed in 79 patients and two patients were identified as having likely pathogenic variants: one had a heterozygous c.122G>A (p.R41H) variant in THAP1 (DYT6) and the other carried a c.1825G>A (p.D609N) substitution in ATP1A3 (DYT12). No significant correlation was found between plasma NfL levels and dystonia rating scores. CONCLUSION: Plasma NfL levels are elevated in patients with generalized dystonia and dystonia combined with parkinsonism, suggesting that neurodegeneration is involved in the disease process of this subgroup of patients.


Dystonia , Dystonic Disorders , Movement Disorders , Humans , Intermediate Filaments , Neurofilament Proteins , Biomarkers , DNA-Binding Proteins , Apoptosis Regulatory Proteins , Sodium-Potassium-Exchanging ATPase
12.
J Neurol Sci ; 451: 120731, 2023 08 15.
Article En | MEDLINE | ID: mdl-37454574

BACKGROUND: Nigrosome-1 imaging has been used for assisting the diagnosis of Parkinson's disease (PD). We aimed to examine the diagnostic performance of loss of nigrosome-1 in PD and the correlation between the size of the nigrosome-1 and motor severity of PD. METHODS: We included 237 patients with PD and 165 controls. The motor severity of PD was assessed with the Unified Parkinson's Disease Rating Scale (UPDRS) part III score and Hoehn-Yahr staging. The 3 or 1.5 Tesla susceptibility-weighted imaging combined with a deep-learning algorithm was applied for detecting the loss and the size of nigrosome-1. Clinical correlations and diagnostic performance of size of nigrosome-1 were also investigated. RESULTS: The mean nigrosome-1 size was significantly smaller in PD patients than in controls (0.06 ± 0.07 cm2 vs. 0.20 ± 0.05 cm2, P < 0.001). The area under the receiver operating characteristic curve (AUC) of the established model showed 0.94 accuracy (95% confidence interval [CI]: 0.87, 1.01, P < 0.01) in differentiating between the PD and control groups. Moreover, the partial loss of nigrosome-1 detected with SWI had an AUC of 0.96 in discriminating early-stage PD from controls (95% CI: 0.88, 1.02, P < 0.001). After adjusting for age, sex, disease duration, and levodopa equivalent daily dose, the estimated size of nigrosome-1 was negatively associated with the UPDRS part III motor score (ρ = -0.433, P < 0.001), but not with Mini-Mental State Examination scores (ρ = 0.006, P = 0.894). CONCLUSIONS: The extent of loss and the size of nigrosome-1 may potentially assist in the diagnosis of PD. Nigrosome-1 size reflects the motor severity of PD.


Parkinson Disease , Humans , Parkinson Disease/complications , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Levodopa , Substantia Nigra/diagnostic imaging
13.
J Mov Disord ; 16(3): 248-260, 2023 Sep.
Article En | MEDLINE | ID: mdl-37291830

Nongenetic movement disorders are common throughout the world. The movement disorders encountered may vary depending on the prevalence of certain disorders across various geographical regions. In this paper, we review historical and more common nongenetic movement disorders in Asia. The underlying causes of these movement disorders are diverse and include, among others, nutritional deficiencies, toxic and metabolic causes, and cultural Latah syndrome, contributed by geographical, economic, and cultural differences across Asia. The industrial revolution in Japan and Korea has led to diseases related to environmental toxin poisoning, such as Minamata disease and ß-fluoroethyl acetate-associated cerebellar degeneration, respectively, while religious dietary restriction in the Indian subcontinent has led to infantile tremor syndrome related to vitamin B12 deficiency. In this review, we identify the salient features and key contributing factors in the development of these disorders.

14.
Mov Disord Clin Pract ; 10(6): 878-895, 2023 Jun.
Article En | MEDLINE | ID: mdl-37332644

The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.

15.
J Mov Disord ; 16(3): 231-247, 2023 Sep.
Article En | MEDLINE | ID: mdl-37309109

Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.

16.
Parkinsonism Relat Disord ; 113: 105496, 2023 08.
Article En | MEDLINE | ID: mdl-37385160

BACKGROUND: Recent concepts suggest that the neuropathological hallmark of Parkinson's disease (PD) may in part originate from the enteric nervous system. We evaluated the frequency of functional gastrointestinal disorders in PD patients using Rome IV criteria and correlated the clinical severity of PD. METHODS: PD patients and matched controls were recruited between January 2020 and December 2021. Rome IV criteria were used to diagnose constipation and irritable bowel syndrome (IBS). Severity of PD motor symptoms was evaluated using UPDRS part III scores and non-motor symptoms using Non-motor Symptoms Scale (NMSS). RESULTS: A total of 99 PD patients and 64 controls were enrolled. The prevalence of constipation (65.7% vs. 34.3%, P < 0.001) and IBS (18.1% vs 5%, P = 0.02) were significantly higher in PD patients than controls. The prevalence of IBS was higher in early-stage PD than advanced-stage PD (14.43% vs. 8.25%, P = 0.02), whereas constipation was more common in advanced stages (71.43% vs. 18.56%, P < 0.001). PD patients with IBS had higher NMSS total scores (P < 0.01) than those without IBS. The severity of IBS correlated with NMSS scores (r = 0.71, P < 0.001), especially subscores in domain 3 assessing mood disorders (r = 0.83, P < 0.001), but not UPDRS part III scores (r = 0.06, P = 0.45). The severity of constipation correlated with the UPDRS part III scores (r = 0.59, P < 0.001) but not the domain 3 mood subscores (r = 0.15, P = 0.07). CONCLUSION: The prevalence of IBS and constipation was higher in PD patients than controls and phenotypic correlation supported the occurrence of IBS with higher non-motor symptom burden, especially mood symptoms, in PD patients.


Irritable Bowel Syndrome , Parkinson Disease , Humans , Irritable Bowel Syndrome/diagnosis , Irritable Bowel Syndrome/epidemiology , Irritable Bowel Syndrome/complications , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology , Rome , Surveys and Questionnaires , Constipation/diagnosis , Constipation/epidemiology , Constipation/etiology
17.
J Mov Disord ; 16(2): 168-179, 2023 May.
Article En | MEDLINE | ID: mdl-36872857

OBJECTIVE: aaWilson's disease (WD) is a rare genetic disorder of copper metabolism, and longitudinal follow-up studies are limited. We performed a retrospective analysis to determine the clinical characteristics and long-term outcomes in a large WD cohort. METHODS: aaMedical records of WD patients diagnosed from 2006-2021 at National Taiwan University Hospital were retrospectively evaluated for clinical presentations, neuroimages, genetic information, and follow-up outcomes. RESULTS: aaThe present study enrolled 123 WD patients (mean follow-up: 11.12 ± 7.41 years), including 74 patients (60.2%) with hepatic features and 49 patients (39.8%) with predominantly neuropsychiatric symptoms. Compared to the hepatic group, the neuropsychiatric group exhibited more Kayser-Fleischer rings (77.6% vs. 41.9%, p < 0.01), lower serum ceruloplasmin levels (4.9 ± 3.9 vs. 6.3 ± 3.9 mg/dL, p < 0.01), smaller total brain and subcortical gray matter volumes (p < 0.0001), and worse functional outcomes during follow-up (p = 0.0003). Among patients with available DNA samples (n = 59), the most common mutations were p.R778L (allelic frequency of 22.03%) followed by p.P992L (11.86%) and p.T935M (9.32%). Patients with at least one allele of p.R778L had a younger onset age (p = 0.04), lower ceruloplasmin levels (p < 0.01), lower serum copper levels (p = 0.03), higher percentage of the hepatic form (p = 0.03), and a better functional outcome during follow-up (p = 0.0012) compared to patients with other genetic variations. CONCLUSION: aaThe distinct clinical characteristics and long-term outcomes of patients in our cohort support the ethnic differences regarding the mutational spectrum and clinical presentations in WD.

18.
Parkinsonism Relat Disord ; 109: 105353, 2023 04.
Article En | MEDLINE | ID: mdl-36863113

BACKGROUND: Mitochondrial membrane protein‒associated neurodegeneration (MPAN) is a rare genetic disease characterized by progressive neurodegeneration with brain iron accumulations combined with neuronal α-synuclein and tau aggregations. Mutations in C19orf12 have been associated with both autosomal recessive and autosomal dominant inheritance patterns of MPAN. METHODS: We present clinical features and functional evidence from a Taiwanese family with autosomal dominant MPAN caused by a novel heterozygous frameshift and nonsense mutation in C19orf12, c273_274 insA (p.P92Tfs*9). To verify the pathogenicity of the identified variant, we examined the mitochondrial function, morphology, protein aggregation, neuronal apoptosis, and RNA interactome in p.P92Tfs*9 mutant knock-in SH-SY5Y cells created with CRISPR-Cas9 technology. RESULTS: Clinically, the patients with the C19orf12 p.P92Tfs*9 mutation presented with generalized dystonia, retrocollis, cerebellar ataxia, and cognitive decline, starting in their mid-20s. The identified novel frameshift mutation is located in the evolutionarily conserved region of the last exon of C19orf12. In vitro studies revealed that the p.P92Tfs*9 variant is associated with impaired mitochondrial function, reduced ATP production, aberrant mitochondria interconnectivity and ultrastructure. Increased neuronal α-synuclein and tau aggregations, and apoptosis were observed under conditions of mitochondrial stress. Transcriptomic analysis revealed that the expression of genes in clusters related to mitochondrial fission, lipid metabolism, and iron homeostasis pathways was altered in the C19orf12 p.P92Tfs*9 mutant cells compared to control cells. CONCLUSION: Our findings provide clinical, genetic, and mechanistic insight revealing a novel heterozygous C19orf12 frameshift mutation to be a cause of autosomal dominant MPAN, further strengthening the importance of mitochondrial dysfunction in the pathogenesis of MPAN.


Frameshift Mutation , Neuroblastoma , Humans , Frameshift Mutation/genetics , alpha-Synuclein/genetics , Pedigree , Mitochondrial Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Membrane Proteins/genetics , Iron/metabolism
19.
Mov Disord ; 38(2): 286-303, 2023 02.
Article En | MEDLINE | ID: mdl-36692014

BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Parkinson Disease , Humans , Parkinson Disease/genetics , Mutation
20.
Parkinsonism Relat Disord ; 107: 105294, 2023 02.
Article En | MEDLINE | ID: mdl-36657279

The inosine monophosphate dehydrogenase gene (IMPDH2) was recently reported as a novel gene associated with autosomal dominantly inherited dystonia. We investigated 245 Taiwanese patients with molecularly unassigned isolated or combined dystonia without features of neurodevelopmental disorders and found none had pathogenic variants. Our findings suggest that IMPDH2 may not play a major role in dystonia.


Dystonia , Humans , Dystonia/genetics , Asian People/genetics , IMP Dehydrogenase/genetics
...